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Abstract We use mathematical modeling via the fast Padé transform (FPT) with re-
spect to a theoretically-designed problem based on time signals that are similar to NMR
data as encoded from benign and malignant ovarian cyst fluid. The FPT reconstructed
exactly all the input spectral parameters by using exceedingly small fractions of the
full time signals both for those corresponding to the benign, as well as to the malig-
nant case. The converged parametric results remained stable thereafter at longer signal
lengths. The Padé absorption spectra yielded clear resolution of all the extracted phys-
ical metabolites. The capacity of the FPT to resolve and precisely quantify the physical
resonances as encountered in benign versus malignant ovarian cystic fluid is demon-
strated. The practical significance of such findings is enhanced by the avoidance of the
time signals’ exponential tail which is embedded in the background, leading to prob-
lems in quantification. Without any fitting or numerical integration of peak areas, the
FPT reliably yields the metabolite concentrations of major importance for distinguish-
ing benign from malignant ovarian lesions. Thus, the FPT provides distinct advantages
relative to the standard Fourier methodology, which is also stable, but has a number of
drawbacks. These include limited resolution capacity, as well as non-parametric esti-
mation, so that only a shape spectrum is generated and post-processing is necessary
via, e.g., fitting or numerical integrations which are not unique. The FPT is also distin-
guished from other competitive parametric methods, which are generally unstable as a
function of signal length N at a fixed bandwidth and, therefore, are particularly unsuit-
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able to clinical data. We conclude that these advantages of the FPT could be of definite
benefit for ovarian cancer diagnostics via NMR and that this line of investigation should
continue with encoded data from benign and malignant ovarian tissue, in vitro and
in vivo. This avenue is of clinical urgency for early ovarian cancer detection, a goal
which is still elusive and achievement of which would confer a major survival benefit.

Keywords Ovarian cancer · Magnetic resonance spectroscopy · Time signals ·
Quantification · Fast Padé transform

Abbreviations
Ala Alanine
au Arbitrary units
Cho Choline
COSY 2 dimensional correlated spectroscopy
Cr Creatine
Crn Creatinine
Cmet Metabolite concentration
Cref Reference concentration
CT Computerized tomography
DFT Discrete Fourier transform
DLP Decimated linear predictor
DPA Decimated Padé approximant
DSD Decimated signal diagonalization
FFT Fast Fourier transform
FID Free induction decay
FPT Fast Padé transform
Glc Glucose
Gln Glutamine
Iso Isoleucine
HLSVD Hankel-Lanczos Singular Value Decomposition
Lac Lactate
Lys Lysine
Met Methionine
MR Magnetic resonance
MRI Magnetic resonance imaging
MRS Magnetic resonance spectroscopy
MRSI Magnetic resonance spectroscopic imaging
NMR Nuclear magnetic resonance
PA Padé approximant
PLCO Trial Prostate, Lung, Colorectal and Ovarian Trial
ppm Parts per million
SCS Statistical classification strategy
SNR Signal-to-noise ratio
ST Shanks transform
Thr Threonine
TVUS Transvaginal ultrasound
Val Valine
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1 Introduction

As recently underscored [1], resolution enhancement and accurate quantification of
encoded biomedical data are of key relevance to such important public health problems
as timely cancer diagnostics and screening. Insufficient accuracy of all the algorithms
that are commercially available and built into clinical scanners hampers progress, espe-
cially in diagnostic modalities based upon magnetic resonance spectroscopy (MRS)
and spectroscopic imaging (MRSI). Mathematics play a decisive role for improving
the information extraction provided by MRS and MRSI [1]. In the present paper,
we will focus upon the potential advantages of more advanced data analytical meth-
ods, such as the fast Padé transform (FPT) applied to MRS as these could specif-
ically impact upon timely detection of ovarian cancer, a crucial goal which is still
elusive.

1.1 The importance of data analytical methods for MRS

1.1.1 Conventional methods for signal processing in MRS (both in vivo and in vitro)

Heretofore, in vivo and in vitro MRS have relied almost exclusively upon the con-
ventional theoretical framework for data analysis in biomedical imaging, i.e., the fast
Fourier transform (FFT), which is a mathematical procedure for converting the en-
coded time signal into a corresponding frequency representation. The FFT generally
shows steady convergence with increasing signal length N at a fixed bandwidth (or
equivalently, with increasing total acquisition time T ), such that reasonable looking
MR total shape spectra can usually be obtained for not so severely truncated time
signals. In practice, either simulated or encoded time signals are truncated i.e., of
finite lengths (N < ∞). However, only the infinite time signals (N = ∞) give the
exact Fourier coefficients. The lack of infinitely long time signals is circumvented by
resorting to processors with extrapolation features, such as the FPT. Due to its steady
convergence, there are no major troublesome surprises for varying signal lengths in
the FFT, whereas nearly all parametric estimators are unstable as a function of N , such
that oscillations (spikes and other artificial spectral structures) appear before eventual
convergence (if any) [2,3]. These latter spurious findings of parametric estimators
are unacceptable in the clinical setting. Hence, the reliance upon the computationally
stable FFT, at the price of giving up on quantification.

The FFT is a low-resolution shape estimator. Within the FFT, a complex-valued
Fourier spectrum is defined by using only a single polynomial:

F = 1

N

N−1∑

n=0

cn e−2iπ nk/N , 0 ≤ k ≤ N − 1, (1)

where the expansion coefficients {cn} are the time signal points. The FFT provides a
shape spectrum with pre-assigned frequencies whose minimal separation is determined
solely by the total acquisition time, T = Nτ , where N is the set of all the available
signal points and τ is the sampling time (inverse of the chosen bandwidth). The FFT
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spectrum is defined only at the Fourier grid points ω̄k = 2π k/T (0 ≤ k ≤ N −1), and
does not exist at other frequencies [2]. In fact, the FFT yields only a stick spectrum,
although this may not be apparent when viewing the plottings, since the adjacent tips
of the sticks are artificially connected.

Due to this well-known Fourier limitation, the only way to improve resolution is
to increase T in order to decrease the distance 2π/T between the grid points. This
strategy is fruitless, because magnetic resonance (MR) time signals encoded in vivo
using clinical scanners become corrupted with background noise at longer T . The
envelopes of MR time signals decay exponentially and, thus, are also termed free
induction decay (FID). Therefore, signal intensity is highest early in the encoding. For
this reason, it is advantageous to encode time signals as rapidly as possible, i.e., to
avoid long T when mainly noise will be measured. These are, in fact, two mutually
exclusive requirements leading to a conundrum whereby within the FFT, attempts to
improve resolution will result in poorer signal-to-noise ratio (SNR).

A further problem with the FFT is that its single polynomial can only be a linear
transform, which therefore, imports noise from the measured time domain data to the
theoretically analyzed frequency domain, further compromising SNR [2]. The FFT
also lacks extrapolation capabilities that cannot be replaced by the customary zero
filling or periodic extension.

Another critical limitation of the FFT is that it is exclusively a non-parametric
estimator, thus providing only the total shape or envelope of spectral structures, but
without quantification. With the FFT, peak parameters are subsequently extracted with
post-processing via e.g., fitting or numerical quadratures of peak areas. The problem
is that e.g., 2, 3 or more resonances can yield the same fit to a given structure, with
no way to tell which of the applied fits is correct. Particularly troublesome are over-
lapping resonances, and these are often of clinical importance [4]. In the literature,
contradictory findings have arisen related to whether or not a certain metabolite was
included in the original expansion basis set for fitting [5,6].

Besides the fact that fitting is non-unique, vital information which it is actually
contained in the FID is not obtained in this way, such that estimates for position,
width, height and phase of resonances can be biased, despite a deceptive decline in
the assessed Kramer-Rao error bounds. This is due to the non-orthogonality of basis
set elements used in fittings. Any change in one or more of the adjustable parameters
could largely be compensated by independent alterations in the remaining parame-
ters [3]. Furthermore, the starting values for the sought spectral parameters (complex
frequencies and amplitudes) are needed for fitting algorithms. Since these initial val-
ues are unknown, one is obliged to guess. As expected, various guesses yield dif-
ferent sets of estimates for the retrieved spectral parameters. What actually happens
is that different local minima are found, rather than the correct, global minimum.
This indicates how unreliable all the usual least square fitting routines are. The crit-
ical clinical information for cancer diagnostics is the extraction of the true concen-
trations of MR-detectable metabolites. These can only be accurately computed if
the spectral parameters are reliably reconstructed with an intrinsic and robust error
analysis.
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1.1.2 Recent advances in signal processing methods: the fast Padé transform

Recent mathematical advances in signal processing via the FPT offer a distinct pos-
sibility to overcome many of the conventional limitations that are relevant to MR-
based diagnostics. The FPT is a frequency-dependent, non-linear rational polynomial
approximation PL/QK (non-diagonal) or PK /QK (diagonal) of the exact Maclaurin
series with the encoded raw time signal points {cn} as the expansion coefficients.
This polynomial quotient, as a rational function of angular frequency ω, is known
as the Padé approximant (PA). The PA has alternatively been called the fast Padé
transform for signal processing [2,7]. While the term “approximant” is typically used
in numerical analysis, the word “transform” is deemed more appropriate for appli-
cations of the PA in signal processing. We thereby highlight a special feature of the
PA in signal processing, i.e., the possibility of obtaining the shape spectrum from
a time signal via non-parametric transformation reminiscent of the FFT. The Padé
non-parametric estimation is performed by evaluating the polynomial quotient, e.g.,
PK−1/QK or PK /QK without ever searching for any of the spectral parameters, i.e.,
the complex-valued nodal/parent frequencies {ωk} and the corresponding amplitudes
{dk}. In contrast, e.g., the Hankel-Lanczos Singular Value Decomposition (HLSVD)
[8] computes the shape spectrum exclusively by first obtaining the peak parameters
{ωk, dk}. The FPT computes the ansatz spectrum (1/N )

∑N−1
n=0 cnz−n , which is a trun-

cated version of the mentioned Maclaurin series (or equivalently, the truncated causal
z-transform, or the truncated Green’s function), via the unique ratio of two polynomi-
als, e.g., in the para-diagonal form valid at any real or complex frequency ω:

F(z−1) = 1

N

N−1∑

n=0

cnz−n (2)

F(z−1) ≈ R−(z−1), R−(z−1) ≡ P−
K−1(z

−1)

Q−
K (z−1)

=
∑K−1

r=0 p−
r z−r

∑K
s=0 q−

s z−s
. (3)

Here, z is a complex harmonic variable, z = eiωτ . The polynomial coefficients
{p−

r , q−
s } are extracted uniquely from the system of linear equations deduced from the

matching condition Q−
K F = P−

K−1 by equating the coefficients of the same powers of
z−1. The Maclaurin expansion of R−(z−1) in terms of powers of z−1 is convergent out-
side the unit circle |z| > 1. Nevertheless, as a rational function, R−(z−1) is defined by
analytical continuation (Cauchy) everywhere in the entire complex z- plane (|z| < 1,
|z| > 1 except at z = 0 and z = 1). This is in sharp contrast to the original polynomial
F(z−1), which also converges for |z| > 1, but does not exist at all inside the unit
circle |z| < 1. Due to the relation F(z−1) ≈ R−(z−1) from Eq. 3, the first 2K − 1
expansion coefficients of the Maclaurin development of R−(z−1) and F(z−1)are in
exact agreement, i.e., F(z−1)− R−(z−1) = O(z−2K+1). Here, the symbol O denotes
the remainder which is a series containing the terms z−2K+m(m = 1, 2, 3, . . .).
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Function F(z−1) should not be confused with the discrete Fourier transform (DFT).
Namely, Eq. 2 will reduce to the DFT (which is an array {Fk}), only in a very special
case by restricting z to the Fourier mesh z = z̄k ≡ exp(2π ik/N ):

Fk ≡ F(z̄−1
k ) = 1

N

N−1∑

n=0

cne−2iπ n k/N , 0 ≤ k ≤ N − 1, (4)

as in Eq. 1. For the same input function F(z−1), there is another equivalent variant
of the FPT whose e.g., para-diagonal form also represents a polynomial quotient, but
this time in terms of variable z:

F(z−1) ≈ R+(z), R+(z) ≡ P+
K−1(z)

Q+
K (z)

=
∑K−1

r=1 p+
r zr

∑K
s=0 q+

s zs
(5)

The convergence region of R+(z) is inside the unit circle, |z| < 1. There is an important
difference in the first expansion coefficients of the numerator polynomials P−

K−1 and
P+

K−1 , since p−
0 �= 0 and p+

0 ≡ 0 as per Eqs. 3 and 5, respectively [2,7,9]. By the argu-
ment of analytical continuation (Cauchy), the rational polynomial from Eq. 5 is also
defined in the whole complex z-plane (|z| < 1, |z| > 1 except at z = 1 and z = ∞).
The two variants of the FPT defined inside (|z| < 1) and outside (|z| > 1) the unit
circle will hereafter be denoted by the acronyms FPT(+) and FPT(−), respectively. In
the present study, most of the analysis refers to the FPT(−). Therefore, whenever there
is no chance for confusion, the label FPT(−) will be abridged to FPT. Similarly, unless
otherwise indicated, we shall write P−

L (z−1) ≡ PL(z−1) and Q−
K (z−1) ≡ QK (z−1).

An important characteristic of the FPT is its uniqueness. This means that for the two
fixed integers L and K , there can be one and only one rational polynomial representa-
tion of the same input function F(z−1). This, in turn, implies that the two Padé spectra
R+(z) and R−(z−1), having the initial complementary convergence regions |z| < 1
and |z| > 1, respectively, must fully coincide with each other after convergence has
been reached independently by the FPT(+) and the FPT(−). For noiseless synthesized
time signals, given to machine accuracy, this is indeed the case in the exact sense
(R+ = R−) [10]. The approximation, R+ ≈ R−, is satisfied to within the level of
the background noise after exhausting the full signal length [2,10] for noise-corrupted
FID curves, both simulated and measured.

1.1.2.2 Determination of the exact number of resonances including those that overlap.

1.1.2.2.1 Use of the Hankel Matrix in the Time Domain: The encoded time signal
contains the true information about the exact number K of resonances. Therefore, K
is extractable from the data {cn} without guessing. This is in clear contradistinction
to all the processors used in MR-based data analyses. To obtain K , the FPT is applied
directly to the time signal stored as the Hankel or data matrix, HK (cn). The FPT exists
if, in the time domain, the equivalent Shanks transform (ST) of order K is zero, i.e.,
eK (cn) = 0 [2]. The ST of order K , eK (cn), is proportional to the ratio of the two
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Hankel determinants:

eK (cn) ∝ HK+1(cn)

HK (cn)
. (6)

Therefore, the ST and the equivalent FPT are defined if the following two conditions
are simultaneously fulfilled:

HK (cn) �= 0, HK+1(cn) = 0. (7)

Hereafter, each signal point cn is a sum of K damped complex exponentials exp (iωkτ )
with the coefficients that represent stationary (dk) and/or time-dependent (dk,n) ampli-
tudes. In the latter case, the amplitude dk,n is a polynomial of degree equal to the mul-
tiplicity of the fundamental frequncy ωk . In other words, the signature for the given
signal to have K resonances is determined by verifying that both conditions in Eq. 7
are simultaneously satisfied. Moreover, the condition HK+1(cn) = 0 can be enlarged
to encompass HK+p (cn) = 0(p = 1, 2, 3, . . .). This has been shown to translate into
the physically expected and plausible statement dK+p = 0(p = 1, 2, 3, . . .) [2,10].

In practice, to verify Eq. 7, the sequence of Hankel determinants of increasing order
{Hm(cn)} (m = 1, 2, . . .) is computed recursively [2]. The first integer m′ = m at
which Eq. 7 is satisfied gives the total number of resonances, K = m′. Here, one
should bear in mind that any metabolite, being a molecule, can have more than one
resonance. Alternatively, the sequence {em(cn)}(m = 1, 2, . . .) is computed via the
Wynn recursion to detect em′(cn) = 0 which then yields the sought K = m′. It has
been shown in Ref. [2] that these two equivalent procedures for obtaining K exactly
from the time signal {cn} are fully applicable to MRS data. This conceptual strat-
egy is verified to work as per theory for synthesised, realistic time signals by exactly
reconstructing any given number K of resonances [10].

1.1.2.2.2 Use of the Froissart doublets in the frequency domain: The FPT can deter-
mine K even without checking the two conditions in Eq. 7. This is done by computing
a sequence of the Padé shape spectra {Pm/Qm}(m = 1, 2, 3, . . .) in a frequency
range of interest, say 0.5 ppm–5.5 ppm, as in the present study. Here, the fingerprint
of detection of the exact number K of resonances is the attainment of the stabilization
value m = m′ after which a saturation is systematically maintained by observing that
Pm′+q/Qm′+q = Pm′/Qm′(q = 1, 2, 3, . . .). This critical transition (m = m′) yields
the sought K as K = m′, and this is verified to work in practice with MRS signals
[11]. This is the concept of Froissart doublets, or equivalently, pole-zero cancellations
[10–12]. Such a cancellation in the Padé polynomial quotients P±

K−1/Q±
K is due to

the equality of the poles (z±
k ) and zeros (z̃±

k ):

z±
k = z̃±

k , (8)

where z±
k ≡ z±1

k and z̃±
k ≡ z̃±1

k . Hereafter, the roots of the characteristic equations
Q±

K (z±1) = 0 and P±
K−1(z

±1) = 0 are denoted by z±1
k and z̃±1

k , respectively. The
computation is carried out by gradually and systematically increasing the degree of the
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Padé polynomials. As these degrees change, the reconstructed spectra fluctuate, until
stabilization occurs. The value of the degree at which the desired level of accuracy
is achieved, represents the sought exact number of resonances K . This constancy of
the reconstructed values can be obtained, e.g., via the cannonical representation of the
Padé polynomial quotients:

P±
K−1(z

±1)

Q±
K (z±1)

= p±
K−1

q±
K

∏K−1
k=1 (z±1 − z̃±

k )
∏K

k′=1(z
±1 − z±

k′)
. (9)

This leads to cancellation of all the terms in the Padé numerator and denominator
polynomials, when the computation is continued after the stabilized value of the order
in the FPT has been attained:

P±
K−1+m(z±1)

Q±
K+m(z±1)

= P±
K−1(z

±1)

Q±
K (z±1)

, (m = 1, 2, 3, . . .). (10)

Whenever z±
k = z̃±

k , the amplitudes of the poles from Froissart doublets are exactly
zero:

d±
k = 0 for z±

k = z̃±
k . (11)

This follows from the definition:

d±
k = p±

K−1

q±
K

∏K−1
k′=1 (z±1

k − z̃±
k′)

∏K
k′=1,k′ �=k(z

±1
k − z±

k′)
. (12)

Pole-zero cancellations occur as well whenever the computations detect multiplici-
ties in {z±

k } even for an MR time signal whose spectrum is non-degenerate. When this
occurs, the same spurious degeneracies also appear in {z̃±

k }. This yields the degenerate
Froissart doublets whose subsequent elimination via pole-zero cancellations provides
the non-degenerate spectrum, as it should be for a spectrum which is defined as being
comprised of pure Lorentzians.

The pole-zero cancellation also occurs, before detecting the true value of K for all
the spurious poles that are cancelled by the corresponding spurious zeros. Thus, Froiss-
art doublets provide a powerful means of determining whether a given recontructed
resonance is true or spurious. The concept of Froissart doublets can be used as a robust
and reliable procedure for separating physical from non-physical (i.e., noise) infor-
mation [11]. Finally, all the Froissart doublets are discarded, so that the reconstructed
spectral parameters {ω±

k , d±
k } contain only genuine, physical information.

1.1.2.3 Computation of the complex frequencies and amplitudes by the FPT without
fitting: Exact Quantification: Theoretical elaboration [2] and numerical validation
[10,11] have been performed with respect to the computational algorithms by which
the FPT provides the peak parameters needed to compute metabolite concentrations in
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MRS. This is done exactly without any fitting whatsoever and the solution is unique.
To obtain the peak parameters, the following equation is solved:

QK (z−1) = 0. (13)

This is known as the secular equation or the characteristic equation of the data (Hankel)
matrix {cn+m}. Since every polynomial of degree K has precisely K roots, Eq. 13
possesses K solutions {z−1

k } (1 ≤ k ≤ K ):

z−1
k = e−iωkτ , ωk = i

τ
ln(z−1

k ). (14)

As a non-linear numerical algorithm, rooting in Eq. 13 is usually unstable for higher
values of K (e.g., K > 200). This problem can be avoided even without windowing,
by solving the equivalent linear eigenproblem of an exceedingly sparse Hessenberg
matrix of dimension K × K [2]. The eigenvalues of this latter matrix are, by defi-
nition, identical to the roots from Eq. 13. Insofar as windowing is used, as in Refs.
[13–18], the dimensionality of the original problem can be reduced via band-limited
decimation of the time signal. This yields the three novel estimators, the decimated
Padé approximant (DPA), the decimated linear predictor (DLP) and the decimated
signal diagonalization (DSD) that have been introduced in Refs. [13,14] to process
time signals of arbitrarily long lengths.

After the K roots {z−1
k } of QK (z−1) are found, the corresponding amplitudes {dk}

are computed from the following explicit expression, given by the Cauchy residue of
e.g., the paradiagonal polynomial ratio PK−1(z−1)/QK (z−1):

dk = PK−1(z
−1
k )

Q′
K (z−1

k )
, (15)

where Q′
K (z−1) is the first derivative of the denominator polynomialQK (z−1):

Q′
K (z−1) = d QK (z−1)

dz−1 . (16)

The parametric complex Lorentzian spectrum is obtained from the Heaviside partial
fraction expansion:

PK−1(z−1)

QK (z−1)
=

K∑

k=1

dk

z−1 − z−1
k

. (17)

Thereby, the FPT can yield the spectral parameters {ωk , dk} with minimal computa-
tional effort and maximal accuracy [10,11], where, the real, Re( fk), and the imaginary,
Im ( fk), part of fk are the position and the width of the kth peak, while |dk |/Im( fk) and
Arg (dk) are the corresponding height and phase, respectively, where fk = ωk/(2π).
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Hereafter, the real and imaginary part of a general complex number u are denoted by
Re (u) and Im (u), respectively.

It is once again emphasized that the FPT can find all the peak parameters of every
physical resonance without ever using the Fourier spectrum, or any other spectrum
at all, for that matter, as opposed to most fitting devices [19]. The Padé spectrum∑K

k=1 dk/(z−1 − z−1
k ) can afterwards be constructed for visualization purposes, in

any of the desired modes (absorption, dispersion, magnitude, power, etc). In particu-

lar, the real part of the complex-valued spectrum
∑K

k=1 dk/
(

z−1 − z−1
k

)
represents

the absorption total shape spectrum Re
(∑K

k=1 dk/[z−1 − z−1
k ]

)
, which is the sum of

K absorption component shape spectra, Re
(

dk/[z−1 − z−1
k ]

)
(1 ≤ k ≤ K ).

1.1.2.3.1 Quantification of overlapping resonances: The formulae from the sub-sec-
tion (1.1.2.3) are valid for non-degenerate (purely Lorentzian) spectra, i.e., for all
distinct roots {z−1

k } of Eq. 13 with z−1
k′ �= z−1

k (k′ �= k). When any of these roots
coincide with each other (degenerate roots—leading to overlapping resonances), the
above formulae need to be modified. If, e.g., the kth root z−1

k of QK (z−1) has Mk ≤ K
multiplicity (i.e., it is repeated Mk times), then the Padé spectrum from Eq. 17 will be
extended to have the following form:

PK−1(z−1)

QK (z−1)
=

J∑

k=1

Mk∑

mk=0

d(mk )
k

(z−1 − z−1
k )mk+1

, (18)

where M1 + M2 + · · · + MJ = K . Then, the quantities d(mk )
k become the new ampli-

tudes that generalize Eq. 15 as:

d(mk )
k = PK−1(z

−1
k )

Q(mk)
K (z−1

k )
, (19)

where Q(m)
K (z−1) is the mth derivative of the denominator polynomial QK (z−1),

Q(m)
K (z−1) =

(
d

dz−1

)m

QK (z−1). (20)

Moreover, with respect to the degenerate roots of Eq. 13, for the given N values of the
signal points, one always obtains the unique quotient PK−1/QK . The time signal {cn}
associated with the physical Lorentzian spectrum from Eq. 17 with non-degenerate
(distinct) roots {z−1

k } is given by:

cn =
K∑

k=1

dkeinωkτ , Im (ωk) > 0. (21)
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The time signal {cn} corresponding to the physical non-Lorentzian spectrum with
degenerate (multiple) roots {z−1

k } is:

cn =
J∑

k=1

dk,neinωkτ , dk,n =
Mk∑

mk=1

d(mk )
k (nτ)mk−1, Im(ωk) > 0. (22)

Here, it is seen that the non-stationary amplitude dk,n of the coincident/confluent res-
onances is a time-dependent polynomial of degree Mk which is the multiplicity of the
root z−1

k of QK (z−1).
It is reemphasized that almost all fitting techniques use the Fourier spectrum to

extract peak parameters for the sought resonances, whereas the FPT avoids fitting
altogether. With the FPT, accurate quantification is achieved by extracting the spectral
parameters of all the physical resonances (position, width, height, phase) directly from
the encoded raw signal {cn}. This leads to the Padé spectra according to the represen-
tations from Eqs. 17 and 18, for a Lorentzian and non-Lorentzian case, corresponding
to FIDs given by (21) and (22), respectively [2,7,9,20].

By definition, all parametric estimators of exponentially damped time signals with
stationary amplitudes {dk} yield the complex Lorentzian spectra given by∑K

k=1 dk/(z−1 − z−1
k ). This latter sum is, in fact, the Padé polynomial quotient

P−
K−1(z

−1)/Q−
K (z−1) as indicated in Eq. 17. Thus, among all the parametric esti-

mators, the FPT is, by definition, best suited to provide spectral analysis of MRS time
signals if they are modeled by a linear combination of damped complex exponentials.
This is also the case because the FPT is the exact filter for these FIDs containing
attenuated complex exponentials (harmonics) with either constant or time-varying
amplitudes (15) or (19) that yield the Lorentzian (17) or non-Lorentzian (18) spec-
trum, respectively [2]. Moreover, such modelling is also entirely realistic for carefully
encoded FIDs from MRS/MRSI with adequate shimming and properly suppressed
water by experimental procedures.

1.1.2.3.2 Accuracy of amplitude quantifications via the FPT: As seen from Eq. 15,
in the FPT, the kth amplitude dk depends only upon the kth root z−1

k . For this reason,
the dk’s found in the FPT are more accurate than those computed by, e.g., the HLSVD.
The HLSVD computes the dk’s for the found set {z−1

m }, by solving a system of lin-
ear equations from Eq. 21 for a given range of values of n(0 ≤ n ≤ N − 1). As a
consequence, all the frequencies from the set {z−1

m } (m = 1, 2, 3, . . .) will contrib-
ute to each individual dk . Thus, with the HLSVD any error in the values {z−1

m } (due
either to spuriousness or insufficient accuracy in computation of otherwise physical
frequencies) could severely compromise the reliability of the dk’s.

This problem does not occur in the FPT , since here each dk is obtained separately
from a single z−1

k using the analytical formulae given by Eqs. 15 and 19 for a Lorentz-
ian and a non-Lorentzian spectrum, respectively. The computational time is thereby
diminished by about half, and, more importantly, this avoids another source of error
from solving an additional system of linear equations used by the HLSVD.

All the methods for computing the dk’s must yield the same result for the common
set of frequencies {ωk}. This uniqueness proof for the amplitudes/residues is given
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in Ref. [2]. It is only natural, therefore, to use the simplest and the most accurate
computation, as done in the FPT via the analytical expressions (15) and (19) for the
amplitudes.

It should also be noted that the HLSVD is limited to exclusively pure Lorentzian
spectra, whereas, as noted earlier, the FPT can treat both Lorentzian and non-Lorentz-
ian spectra on the same footing according to Eqs. 17 and 18, respectively [2]. The
fundamental frequencies {ωk} must be the same in the FPT and the HLSVD. This is
because the eigenroots of the characteristic polynomial (13) from the FPT are identi-
cal to the eigenvalues of the Hankel data matrix which is diagonalised in the HLSVD
[2,8].

With the FPT , the shape spectrum can be obtained by using either the non-paramet-
ric or the parametric estimation from the two equivalent expressions

( ∑K−1
r=0 pr z−r

)/
( ∑K

s=0 qs z−s
)

or
∑K

k=1 dk
/(

z−1 − z−1
k

)
where 2K = N , respectively. Such estima-

tions can be done at any frequency ω which is contained in z = exp(iωτ). This
is in sharp contrast with the FFT which can be computed only at the Fourier grid
z = z̄k = exp(2iπ k/N ) as per definition of the DFT from Eq. 4.

1.1.2.4 Improvements in Resolution and SNR using the FPT In the DFT from Eq.
4 and the ensuing FFT, the coefficients {exp(−2iπn k/N )} are independent of the
cn’s , and this leads to a linear Fourier response function F(z̄−1

k ) with no possibility
for noise suppression, except for signal averaging. In other words, as mentioned, it
is the linearity of the FFT which is responsible for transporting the whole and intact
noise from the domain of measurement (time) to the domain of the theoretical analysis
(frequency).

By contrast, in the FPT, the corresponding coefficients for transformation from the
time to the frequency domain are dependent upon the time signal points {cn}, and
this yields a non-linear response functions R±(z±1). The non-linearity of the FPT
effectively permits noise suppression.

Furthermore, as is clear from Eq. 4, the FFT has a linear convergence (1/N ) with
increased signal length N , while the convergence of FPT is quadratic (∼ 1/N 2) or
exponential near the Froissart stability region [2,11]. This secures a rapid convergence
with the implied resolution enhancement of the FPT relative to the FFT, especially
at more severe truncations of the otherwise unavailable infinitely long time signal, or
equivalently, at shorter acquisition times. Indeed, such expectations have been con-
firmed in Refs. [2,3,7,21] by detailed comparisons of the FPT and FFT from clinical
1H-MRS data at 4T and 7T.

We will now turn our attention to the clinical problem of ovarian cancer, and explain
how the advantages of the FPT might be of benefit to improved detection via MRS.

1.2 Ovarian cancer: the crucial and still elusive goal of early diagnosis

Worldwide, ovarian cancer is the seventh leading cause of death from cancer among
women [22] and is the most common cause of death from gynecologic cancer in many
developed countries [23]. In the year 2000 alone, over 100,000 women worldwide
died from ovarian cancer [22]. Ovarian malignancies are diagnosed at a median age
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of 58 years [24]. While strong family history of ovarian cancer and/or the presence
of BRCA1 or BRCA2 mutations1 are associated with an elevated risk, 90% of ovarian
cancers occur in women who are not in an identifiable high-risk group [25].

Ovarian cancer is usually detected after spread beyond the true pelvis, when the
prognosis is poor, whereas stage Ia disease has a 5-year survival rate well over 90%.
Therefore, survival vitally depends upon early detection of ovarian cancer [26,27].
However, this is still beyond current reach with standard diagnostic methods [28].

While useful for follow-up of patients with established ovarian cancer, the tumor
marker2 CA-125 is neither sufficiently sensitive nor specific to improve early detec-
tion when used alone [29,30]. Small-scale studies examining genomic and proteomic
patterns as possible complementary biomarkers for early ovarian cancer have shown
promise [31–34]. However, further investigation is needed to determine whether these
findings truly provide sufficient improvement in diagnostic accuracy to warrant their
more widespread application for ovarian cancer screening [26,34,35].

Although sensitive, transvaginal ultrasound (TVUS) lacks adequate specificity to
distinguish benign from malignant adnexal changes. The high rate of false positive
findings with TVUS leads to many surgical procedures that do not find any malig-
nancy [26]. There are several large-scale trials on-going to determine whether the
combination of TVUS plus CA-125 could provide acceptable levels of diagnostic
accuracy for ovarian cancer screening. This does not appear to be the case, however.
For example, in the Prostate, Lung, Colorectal and Ovarian (PLCO) Trial involving
nearly 40,000 women, the positive predictive value of abnormal TVUS plus CA-125
was only 23.5%. This meant that in order to find 26 cases of ovarian cancer (plus
3 other malignancies), 535 women underwent surgical exploration [36]. There are
numerous deleterious consequences of such poor specificity. In the PLCO Trial study,
e.g., false-positive findings were associated with significantly poorer adherence to the
Trial, as well as with emotional distress [37]. Particularly because of the high false
positive rates of the existing screening methods, the US Preventive Services Task Force
[38] recommended against routine screening for ovarian cancer.

1.2.1 Results achieved with in vivo MR-based modalities for ovarian cancer
diagnostics

The accuracy with which ovarian cancer is diagnosed has been enhanced by MR-based
modalities. For example, the positive predictive value of TVUS can be improved by
combination with other morphological imaging techniques, e.g., magnetic resonance
imaging (MRI), as well as Doppler flow imaging, computerized tomography (CT).
MRI is generally considered to be the most accurate for assessing adnexal masses
prior to surgery, to distinguish benign from cancerous lesions and in some cases
to make a specific diagnosis [38,39]. Comparing the three morphological imaging

1 The BRCA1 andBRCA2 genes are presumed to act as tumor suppressors. Mutations which impair the
function of either of these two genes can thereby interfere with this tumor suppression.
2 CA-125 is a protein whose presence is often associated with ovarian cancer. However, it has poor sensi-
tivity for early stage malignancy and is also non-specific, being present in other cancers, as well as several
non-malignant conditions, including pregnancy.
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modalities in a meta-analysis, MRI was found to be of greatest incremental value in
identifying ovarian cancer when the nature of adnexal mass was considered indeter-
minate on TVUS [40]. However, even with contrast-enhanced MRI, which provided
the best results, sixty of 241 (24.9%) false positive findings from initial TVUS were
not recognized as benign lesions [41].

Moreover, it should be recalled that as opposed to CT, it is well-known that MRI and
other MR-based diagnostic techniques entail no exposure to ionizing radiation. This
could be of importance for groups at increased risk of ovarian cancer, for whom there
is some (albeit not entirely conclusive) evidence that exposure to diagnostic medical
radiation is associated with further elevation in risk [41,42].

While MRI has provided high spatial resolution to examine morphology, the need
to assess beyond more than purely anatomic aspects, such as biochemistry and tis-
sue physiology, required the development of functional techniques. As a non-invasive
method providing metabolic information, MRS enables tissue characterization at a bio-
chemical level, thus complementing MRI. MRS is also able to detect abnormalities
that are invisible to MRI, because metabolic abnormalities often precede anatomi-
cal/morphological changes [28,43].

Thus far, there have been only a few investigations applying in vivo proton MRS to
evaluate ovarian masses [44–47]. Altogether, some 18 malignant and 54 benign lesions
of various histopathology, as well as one borderline cancerous adnexal mass have been
examined in this way. Only a limited number of metabolites could be identified (cho-
line at 3.2 parts per million (ppm), inverted lactate doublet at around 1.3 ppm, creatine
at 3.0 ppm and lipid at 1.3 ppm, and their concentrations were estimated semi-quanti-
tatively as strongly present or present versus absent. None of these metabolites clearly
distinguished cancerous from benign lesions, such that the results are inconclusive. It
is still technically difficult to encode good quality time signals due to motion artifacts
from respiratory and peristaltic movements [44]. Because of the small size and motion
of this organ, in vivo MRS is mired by problems of resolution and SNR.

1.2.2 In vitro MRS in ovarian cancer diagnostics

Substantially more investigation of malignant and benign ovarian lesions using MRS
has been performed in vitro using high magnetic field strength and laboratory spec-
imen processing techniques. These studies distinguish malignant and normal tissues
in a better way, and offer some insights into molecular mechanisms.

Using peak amplitude ratios, Smith and Blandford [48] were able to differentiate
normal and benign from borderline and malignant ovarian samples with 95% sensi-
tivity and 86% specificity. They employed linear discriminant analysis training using
leave-one-out (12 normal, 22 cancer) for analysis of 7 normal and 15 cancer speci-
mens. The discriminating resonances were: 1.47 ppm (fatty acid), 1.68 ppm (lysine),
2.80 ppm (fatty acid), 2.97 ppm (creatine), 3.17 ppm (choline) and 3.34 ppm (taurine).
Wallace et al. [50] evaluated 19 normal, 3 borderline, and 37 ovarian carcinomas,
based upon peak amplitude ratios of the following resonances: 0.9 ppm (lipid methyl),
1.3 ppm (lipid methylene), 1.7 ppm (lysine and polyamines) and 3.2 ppm (choline).
Normal/benign samples could be distinguished from borderline and malignant sam-
ples with a sensitivity of 95% and specificity of 86% [49].
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Results from a study by Massouger et al. [50] of fluid samples from 9 malignant and
19 ovarian cysts also showed higher lactate, isoleucine, valine, methionine and alanine
in the cancerous specimens, but again generally with wide, overlapping ranges. In addi-
tion, these authors found higher 3-hydroxybutyrate and pyruvic acid in the malignant
cyst fluid. They note that rapid cellular metabolism will lead to elevated 3-hydroxybu-
tyric acid. The high concentrations of branched chain amino acids (isoleucine, leucine,
and valine) are seen as protein breakdown products due to necrosis and proteolysis.
Also included in their study was an endometrioma, whose fluid showed much higher
levels of isoleucine, valine, threonine, alanine, lysine, methionine, and glycine than
did the malignant cysts.

A very detailed comparison of the spectroscopic features of ovarian cancer versus
non-malignant cysts is provided by Boss et al. [51]. Ovarian cyst fluid samples were
taken from 40 patients (12 with malignant and 28 with benign tumors). One dimen-
sional in vitro MRS as well as two dimensional correlated spectroscopy (COSY)
analyses were performed. There were numerous differences in metabolic concen-
trations between the cancerous and benign cysts. In their study, concentrations of
isoleucine (1.02 ppm), valine (1.04 ppm), threonine (1.33 ppm), lactate (1.41 ppm),
alanine (1.51 ppm), lysine (1.67–1.78 ppm), methionine (2.13 ppm), glutamine (2.42–
2.52 ppm) as well as choline (3.19 ppm) were all significantly higher in the malignant
samples, although no metabolites were found which provided absolute distinction
between cancerous and non-cancerous cyst fluid.

Notwithstanding the important achievements of in vitro MRS for ovarian cancer
diagnosis, there are still major problems that hamper more widespread application of
MRS to this clinical area. These problems preclude a more definitive approach whereby
the in vitro findings could be considered the “gold standard” with which MRS signals
encoded in vivo from the ovary could be compared, and which might even surpass the
accuracy of histopathology, as envisioned by Mountford et al. [52]. Gluch [53], e.g.,
comments on the statistical classification strategy (SCS) used in the above-described
in vitro analyses. He raises the question of the suitability of this methodology for more
complex pathological entities: “A classifier can more readily be developed when the
likelihood of belonging to a class of either ‘yes’ or ‘no’, but when a tissue undergoes
numerous stages in evolution from normal to malignant, SCS shows no superiority
over conventional pathology” (p. 467). He notes that the high diagnostic accuracy is
achieved by excluding the fuzzy samples (citing an example for which this was 27%).
Concordant with the observations of Gluch [53], it should be noted that even in the
study by Boss et al. [51], which provided, to date, the most extensive in vitro analy-
sis of MRS signals from benign and malignant ovarian samples, the cited ranges for
each of the metabolites were very wide and overlapping. From the vantage point of
a clinician, Gluch [53] enumerates the limitations of 1H MRS as a diagnostic tool in
oncology. Among these were the lack of reliable in vitro data bases, lack of specificity
of findings such as narrow lipid resonances, which can also be seen with necrosis,
inflammation and other non-malignant processes. He points out that difficulties arise
not so much in regards to the large lesion with suspicious imaging characteristics,
but with respect to small or in situ lesions. It is precisely for these early stages of the
disease when the most sensitive and specific diagnostic methods are needed the most.
Gluch [54] notes that the “chance of missing a cancer of the order of only 1% would
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translate into a significant medicolegal concern, and for this reason clinicians have
to err on the side of caution. Substituting one doubtful test with another leads to no
greater certainty in clinical decision making” (p. 467).

It should be emphasized that most of the estimates of metabolite concentrations,
including those of Ref. [51], were based upon integrating the areas under the peaks in
the Fourier absorption spectra. This procedure is vulnerable to subjectivity due to the
uncertainty with lower and upper integration limits. Such a technique for reconstruct-
ing metabolite concentrations is particularly difficult with peak overlap (“spectral
crowding”), which is known to create quantification problems [54]. Of particular note
is that concentrations of adjacent resonances such as threonine (1.33 ppm), lactate
(1.41 ppm) and alanine (1.51 ppm) and the nearly overlapping resonances isoleucine
and valine in the region of 1.02–1.04 ppm appear to be of major importance for distin-
guishing benign and malignant ovarian specimens. This underscores the need for exact,
unequivocal quantification not only of non-degenerate spectra with distinct roots, but
also of those with degenerate roots, i.e., overlapping resonances. As elaborated earlier
in this paper, the FPT would appear to be ideally suited to this task.

1.3 Aim of the present study

In the present study we examine the performance of the FPT applied to theoretically
generated (synthesized or simulated) time signals that are reminiscent of in vitro MRS
data as encoded from benign and malignant ovarian cyst fluid at a strong magnetic
field B0 ≈ 14.1T in a 600 MHz NMR spectrometer [51]. These are viewed as the first
steps in the process of determining whether the described features of the FPT could
be of potential benefit for ovarian cancer diagnostics via MRS.

2 Results

We synthesized two FIDs of the type cn = ∑K
k=1 dkeinτωk as in Eq. 21 via a sum

of K = 12 damped complex exponentials exp(inτωk)(1 ≤ k ≤ 12) with time-inde-
pendent (stationary) amplitudes dk . These time signals were subsequently quantified
using the FPT, as described in [10,55].

2.1 Input data

For the benign case, we derived the input data for the spectral parameters from those
reported for median concentrations Cmet (expressed in µmol/l) of 12 metabolites
that were characteristic of benign ovarian cyst fluid [51]. These median values were
obtained from twenty-three patients with benign ovarian cysts collected by Boss et al.
[51]. The input data are shown in Table 1.

Likewise, malignant concentrations correspond to the median values for malignant
ovarian cysts from twelve patients [51], and these are used as the input data for the
malignant case (Table 2).
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Table 1 Input data from theoretically generated (synthesized) FIDs reminiscent of in vitro MRS data as
encoded from benign ovarian cyst fluid [52]

Entry data (Benign)

k Metabolite assignment Re ( fk ) (ppm) Im ( fk ) (ppm) |dk | (au) Concentration (µmol/L)
1. Isoleucine (Iso) 1.020219 0.000818 0.003060 10
2. Valine (Val) 1.040048 0.000821 0.034578 113
3. Threonine (Thr) 1.330124 0.000822 0.027540 90
4. Lactate (Lac) 1.410235 0.000828 0.758570 2479
5. Alanine (Ala) 1.510318 0.000824 0.089657 293
6. Lysine (Lys) 1.720125 0.000823 0.030906 101
7. Methionine (Met) 2.130246 0.000819 0.002142 7
8. Glutamine (Gln) 2.470118 0.000825 0.084149 275
9. Creatine (Cr) 3.050039 0.000822 0.019278 63

10. Creatinine (Crn) 3.130227 0.000821 0.020808 68
11. Choline (Cho) 3.190136 0.000820 0.004590 15
12. Glucose (Glc) 5.220345 0.000829 0.424419 1387

Hereafter, Re ( fk ) denotes the chemical shift as the relative frequency in dimensionless units of parts per
million (ppm) and au denotes arbitrary units

Table 2 Input data from theoretically generated (synthesized) FIDs reminiscent of in vitro MRS data as
encoded from malignant ovarian cyst fluid [52]

Entry data (Malignant)

k Metabolite assignment Re ( fk ) (ppm) Im ( fk ) (ppm) |dk | (au) Concentration (µmol/L)
1. Isoleucine (Iso) 1.020219 0.000828 0.024174 79
2. Valine (Val) 1.040048 0.000831 0.120869 395
3. Threonine (Thr) 1.330124 0.000832 0.075887 248
4. Lactate (Lac) 1.410235 0.000838 2.000000 6536
5. Alanine (Ala) 1.510318 0.000834 0.179315 586
6. Lysine (Lys) 1.720125 0.000833 0.149939 490
7. Methionine (Met) 2.130246 0.000829 0.018972 62
8. Glutamine (Gln) 2.470118 0.000835 0.253366 828
9. Creatine (Cr) 3.050039 0.000832 0.020196 66

10. Creatinine (Crn) 3.130227 0.000831 0.024174 79
11. Choline (Cho) 3.190136 0.000830 0.012852 42
12. Glucose (Glc) 5.220345 0.000839 0.079559 260

The FIDs from Ref. [51] were recorded with a static magnetic field strength B0 ≈
14.1T (Larmor frequency of 600 MHz) and a bandwidth of 6667 Hz. The inverse of
this bandwidth is used for the sampling time τ in the presently synthesized FIDs. The
total signal length N from Ref. [51] has been chosen so as to satisfy the Fourier resolv-
ing power �ωmin = 2π/T . In Ref. [51], use has been made of this latter relation for
the chosen bandwidth 6667 Hz to aim at a spectral resolution �ω = 0.02 ppm, which
should split apart isoleucine and valine as the two most tightly spaced metabolites. It
then follows that the closest integer in the form 2m for the FID length required in the
FFT is N = 215 = 32768 = 32 K (1K= 1024). With such a set-up, the FFT spectrum
in Ref. [51] has been computed by zero-filling the two encoded FIDs each to 64 K. We
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have verified (see sub-Sect. 2.2.2) that 32 K signal points augmented by 32 K zeros
is the first FID length which simultaneously gives the converged absorption spectra
and resolves all the metabolites in the Fourier absorption spectra. By contrast, as men-
tioned, the FPT resolution is not predetermined by 2π/T and, thus, shorter FID length
could suffice. Therefore, we sampled our FIDs using only N = 1024 and, moreover,
N/16 = 64 signal points were sufficient to solve the quantification problem with the
resulting exact reconstruction (see sub-Sect. 2.2.1).

The input peak amplitudes were extracted from the tabulated data from Ref. [51]
using the quotient 2Cmet/Cref . Here, the reference concentration Cref was taken to
be the largest concentration from Ref. [51] (6536µmol/L), namely the median lactate
concentration in the malignant samples. The phases ϕk(1 ≤ k ≤ 12) from dk were all
set to zero so that every amplitude dk becomes real, dk = |dk |. The line-widths in Ref.
[51] were estimated to be about 1 Hz. In our synthesized FIDs, the line-widths were
allowed to have small variations within the interval {8.19, 8.39} × 10−4 ppm (these
are labeled as Im ( fk) in the Tables).

2.2 Reconstructed data

2.2.1 Parametric data

Using the diagonal FPT to analyze the encoded FIDs, the coefficients {pr , qs} of the
polynomials PK and QK were computed by solving the systems of linear equations
deduced from definition (3), treating the product in G N (z−1)∗QK (z−1) = PK−1(z−1)

as a convolution [10,11].
To extract the peak parameters, one solves the characteristic equation QK (z−1) = 0,

as in Eq. 13. This leads to K unique roots z−1
k (1 ≤ k ≤ K ), so that the sought ωk is

deduced via ωk = (i/τ) ln(z−1
k ), as in Eq. 14.

The FPT extracts the parameters {ωk , dk} (1 ≤ k ≤ K ) of every physical resonance
directly from the raw encoded FID. The kth metabolite concentration is computed
from the reconstructed peak parameters (peak positions Re(ωk), widths Im(ωk) and
the amplitudes dk).3 In the FPT, the kth amplitude dk depends only upon the kth root
z−1

k and it is obtained analytically from the Cauchy residue theorem given in Sect.
1.1.2.3.

Peak area is proportional to the concentration of the metabolite, relative to a selected
reference concentration (Cref ), which in this particular problem is 6536µmol/L, the
median lactate concentration in the malignant samples, which was the largest concen-
tration from Ref. [51], as mentioned. Thus, the metabolite concentrations are computed
simply as [(6536µmol/L)(dk)]/2.

Tables 3 and 4 show the reconstructed data at three signal lengths (N/32 = 32,
N/16 = 64 and N/8 = 128) with the same bandwidth, for the benign and malignant
cases, respectively. On the left set of columns of these two tables, it is seen that

3 Recall that all the phases {ϕk }(1 ≤ k ≤ K ) were set to zero, so that the amplitudes are real.
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with N/32 = 32 signal points, nine of the twelve peaks were identified. For both the
benign and the malignant cases isoleucine and threonine were undetected at N /32.
Only one peak was identified in the region between 3.07 and 5.22 ppm at the sig-
nal length of N/32 = 32, and the position was slightly different for the benign and
malignant case (3.14 and 3.17 ppm, respectively). For none of these peaks were all the
spectral parameters exact to the input six decimal places of accuracy, neither for the
data corresponding to the benign nor in the malignant cases, at N /32. On the middle
set of columns of Tables 3 and 4, we see that in both of these cases, convergence
was achieved. This is with N/16 = 64 signal points, where the FPT succeeded in
reconstructing exactly (to six decimal places) all the spectral parameters of each of the
twelve peaks corresponding to the input data for both the benign and the malignant
cases. In other words, at the signal length N/16 = 64 all the reconstructed param-
eters are identical to the input data from Tables 1 and 2, respectively. The right set
of columns from Tables 3 and 4 respectively, reveal that the convergence is stable
with an increased number of signal points. Namely at N/8 = 128, all of the spectral
parameters remain identical to those at N/16 = 64. At even longer fractions N /M
(M < 8) of the full FID including N = 1024 (M = 1), we have verified that all the
peak parameters reconstructed by the FPT remained unchanged in accordance with
the concept of Froissart doublets (pole-zero cancellations).

2.2.2 Absorption spectra

As mentioned earlier, the diagonal Padé non-parametric estimation is presently ach-
ieved by evaluating the quotient spectrum PK /QK . This is done without search-
ing for any of the spectral parameters, unlike other parametric estimators (e.g., the
HLSVD) that compute the envelope spectrum by first reconstructing the peak param-
eters {ωk , dk}. The spectra in the FPT are presented in the absorption mode, which
is defined as the real part of the corresponding complex mode. Hereafter, “absorp-
tion spectrum” will be used as the abridged nomenclature for “absorption total shape
spectrum” in the terminology of sub-Sect. 1.1.2.3.

Here, we examine the convergence behavior of the FPT at the same signal lengths
as used in the previous sub-Sect. (2.2.1) to confirm that the parameters’ convergence
naturally implies convergence of the corresponding absorption spectra. For compar-
ison, the absorption spectra at the corresponding signal lengths from the familiar
non-parametric method, the FFT are also shown.

Figure 1 displays the convergence of the absorption spectra at varying signal lengths
for the FID which simulates the benign ovarian cyst data. The left three panels present
the absorption spectra of the FFT at N/32 = 32 (top (i)), N/16 = 64 (middle (ii)) and
N/8 = 128 (bottom (iii)). At each of these signal lengths, the FFT-generated spectra
are rough and uninterpretable.

The right three panels of Fig. 1 show that the convergence of the FPT-generated
spectra is consistent with the parametric data from Table 1. In the upper right hand
panel (iv), nine of the twelve metabolites are detected. The remaining three resonances:
isoleucine, threonine and the second resonance in the region between 3.1 and 3.2 ppm
require 64 signal points to be resolved. At this latter signal length, all the peak heights
are correct. Again, in agreement with Table 1, at N/16 = 64 the absorption spectrum
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Fig. 1 Convergence of absorption total shape spectra (Benign); FFT (Left), FPT(−) (Right); FID lengths:
N/M , N = 1024, M = 8–32

is fully converged in the FPT and remains so at the signal length of N/8 = 128. We
have also verified that at even longer fractions N/M (M < 8) of the full FID including
N = 1024 (M = 1), the spectra reconstructed by the FPT remained unchanged, as
dictated by Froissart doublets.

The absorption spectra at varying signal lengths for the FID which simulates the
malignant ovarian cyst data are shown in Fig. 2. The absorption spectra of the FFT
(left panel) at N/32 = 32 (top (i)), N/16 = 64 (middle (ii)) and N/8 = 128 (bottom
(iii)) are also rough and uninterpretable, as seen for the benign case.
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Fig. 2 Convergence of absorption total shape spectra (Malignant); FFT (Left), FPT(−) (Right); FID lengths:
N/M , N = 1024, M = 8−32

The convergence pattern of the FPT-generated spectra (right panel of Fig. 2) is con-
sistent with the parametric data from Table 2. Specifically, at N/32 = 32 (top, (iv)),
nine of the twelve metabolites are detected. Similarly to Fig. 1, the remaining three
resonances (isoleucine, threonine and the second resonance in the region between 3.1
and 3.2 ppm) require 64 signal points to be resolved on Fig. 2. At N/16 = 64, all 12
metabolites are seen and they show the correct peak heights, such that the absorption
spectrum is fully converged in the FPT (middle panel (v) as well as for the longer
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Fig. 3 Convergence of absorption total shape spectra in FFT at three long total acquisition times benign
(Left), malignant (Right); FID lengths: N = 8K = 8192, 16K = 16384, 32K = 32768 (K = 1024)

signal length of N/8 = 128 (bottom panel (vi)). Again, we confirmed that at even
longer fractions N /M (M < 8) of the full FID including N = 1, 024 (M = 1), the
spectra reconstructed by the FPT remained unchanged, in accordance with pole-zero
cancellations.

Figure 3 depicts the convergence pattern of the absorption spectra in the FFT at
three large signal lengths (N = 8K = 8192, 16K = 16384, 32K = 32768) where, as
before, K denotes the kilobyte (K= 1024). Benign and malignant data are shown on
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the left and the right column of Fig. 3, respectively. For both benign and malignant
cases, the first FID length for which the positive-definite Fourier absorption spectra are
obtained is very high, N = 8K (top panels (i) and (iv)). All the 12 resonances are seen
to be resolved in the FFT at N = 8K on panels (i) and (iv), but several peak heights
are incorrect. This implies that some of the metabolite concentrations estimated from
the Fourier spectra by either fitting or peak integrations will be insufficiently accurate
even at N = 8K. Moreover, it is obvious from panels (i) and (iv) at N = 8K that
there are significant baseline distortions for both benign and malignant cases. Such
distortions would invalidate both fitting and numerical peak integrations. These base-
line distortions disappear at N = 16K on the middle panels (ii) and (v), but some
of the peaks still have not reached their correct heights. Eventually, the FFT is found
to converge at N = 32K on the bottom panels (iii) and (vi) of Fig. 3. Nevertheless,
it should be re-emphasized that this Fourier convergence is concerned only with the
line-shapes from panels (i)–(vi), and not with quantification, which in this methodol-
ogy necessitates post-processing via fittings or peak integrations that are ambiguous
especially when spectral crowding occurs. All the quoted signal lengths in the FFT
have been doubled by zero filling.

Figure 4 summarizes the convergence behavior of the FPT for the absorption spec-
tra corresponding to data of benign (left panels) versus malignant ovarian cysts (right
panels) at the signal lengths of N/32 = 32 (top panels, (i) and (iv)), N/16 = 64
(middle panels, (ii) and (v)), and N/8 = 128 (bottom panels, (iii) and (vi)). Once
convergence has been achieved at N/16 = 64, notable differences can be observed
in peaks heights between the benign and the malignant cases. The choline, gluta-
mine, methionine, lysine, alanine, lactate, threonine, valine and isoleucine peaks are
all higher in the malignant case, whereas the peak corresponding to glucose is higher
in the benign case.

2.2.3 Metabolite maps of concentrations

We also studied the convergence pattern of the concentrations of the metabolites. In
Fig. 5, the chemical shift is presented along the abscissae of the six panels, with con-
centrations as the ordinates. The input data are represented by the symbol “x”, while
the Padé-reconstructed data are shown as open circles. The data corresponding to the
benign and malignant cases are presented in the left and right panels, respectively.
Prior to convergence, at N/32 = 32 (top panels (i) and (iv)), the only metabolite for
which the correct concentrations in both cases were obtained is glucose at 5.22 ppm
(1387µmol/L (benign) and 260µmol/L (malignant), respectively). At N/16 = 64
(middle panels (ii) and (v)) and N/8 = 128 (bottom panels (iii) and (vi)), all of the
metabolite concentrations are correct, as seen both numerically and by the graphic
representation. For N/16 and N/8, this means that the “x’s” are completely centered
within the open circles, indicating full agreement between the input and reconstructed
data (see also Tables 1–4).

Finally, Fig. 6 recapitulates the absorption spectra and the retrieved concentrations
with the full convergence achieved by the FPT using only 64 FID points out of 1024
data sampled in the time domain. This combined plot illustrates the overall power of the
FPT which performs shape estimation and quantification on the same footing without
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Fig. 4 Convergence of absorption total shape spectra in FPT(−); benign (Left), malignant (Right); FID
lengths: N/M , N = 1024, M = 8−32

any post-processing and with no reliance upon other estimators. Fig. 6 is deemed to be
most helpful for clinicians, since it gives both a graphic and a quantitative overview of
MRS. Such a procedure is depicted on Fig. 6 as a comprehensive summary of signal
processing, encompassing line-shape estimation and quantification, which culminates
in the reconstructed concentrations as the diagnostically most relevant information
from the examined tissue.
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Fig. 5 Convergence of concentrations of metabolites in FPT(−); benign (Left), malignant (Right); FID
lengths: N/M, N = 1024, M = 8−32

3 Discussion

The present work extends and elaborates the initial study [55] applying the fast Padé
transform to MR data from benign and malignant ovarian cyst fluid. The powerful
extrapolation features of the FPT are clearly demonstrated in that with only 64 data
points, the Padé absorption spectra are fully converged, including a clear delineation
of closely lying resonances such as alanine, lactate and threonine in the region between
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Fig. 6 Exact reconstruction of metabolite concentrations by FPT(−) using only 64 FID points from N =
1024: benign (Top), malignant (Bottom)

1.3 ppm and 1.51 ppm, and even the nearly overlapping isoleucine and valine which
are separated by only 0.02 ppm. In marked contrast, the FFT yielded entirely uninter-
pretable spectra at these short signal lengths. As reviewed in Sect. 1.1.1, the envelopes
of MR time signals decay exponentially such that the signal intensity is the highest
early in the encoding. It is thus advantageous to encode the time signal as rapidly as
possible, i.e., to avoid long T when mainly noise will be measured. This is particularly
important for clinical signals encoded at lower magnetic field strengths.

The FPT provides not only the shape spectra, but also the vitally important para-
metric analysis (quantification) from which the metabolite concentrations are ob-
tained. In the present problem, with only 64 data points out of 1024 sampled data, the
FPT exactly reconstructed all the spectral parameters to an accuracy of six decimal
places for all the twelve metabolite peaks. These parameters were then used to com-
pute metabolite concentrations simply and unequivocally. With the standard Fourier
approach, metabolite concentrations are estimated from the shape spectra by integrat-
ing the areas under the peaks or fitting the peaks to a subjectively chosen number of
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Lorentzians and/or Gaussians. Even for clearly delineated peaks, as noted, this proce-
dure of numerical quadrature is vulnerable to subjectivity due to the uncertainty about
the lower and upper integration limits. However, when the peaks overlap, this standard
method for reconstructing metabolite concentrations is fraught with major difficulties
and uncertainties; it is thus well-recognized that “spectral crowding” creates quanti-
fication problems [54]. This “spectral crowding” problem does not obstruct the FPT,
which via parametric analysis, yields reliable information about the concentrations
not only of isolated resonances, but also of those that are overlapping [10,11].

As reviewed in Sect. 1.2.2, a substantial number of MR-observable compounds
have been found to provide some distinction between benign and cancerous ovarian
lesions [48–51] when in vitro MRS is applied using high magnetic field strength and
the conventional laboratory specimen processing techniques. Notably, concentrations
of adjacent resonances such as threonine (1.33 ppm), lactate (1.41 ppm) and alanine
(1.51 ppm) and the nearly overlapping resonances isoleucine and valine in the region
of 1.02 to 1.04 ppm differ significantly in these two types of lesions [51]. The high
concentrations of these branched chain amino acids are seen as protein breakdown
products due to necrosis and proteolysis. However, none of these studies reported
any metabolite alone or in combination with other metabolites which unequivocally
distinguished benign from cancerous ovaries. Even when the differences in concen-
trations were statistically highly significant such as in Ref. [51], the ranges were not
distinct. One avenue for further investigation which is currently underway is to apply
the FPT to larger-scale in vitro experimental MRS data from benign and malignant
ovarian lesions. In this way, we are exploring the possibilities of whether the FPT with
its capacity to unequivocally yield exact quantifications could also specify metabolite
concentrations that more clearly distinguish cancerous from non-neoplastic ovary. The
FPT could thereby help establish the standards of MR-detectable metabolite concen-
trations for normal versus specific pathological entities of the ovary.

The high resolution of the FPT also could be of benefit for in vivo MRS investi-
gations, for which, as reviewed in Sect. 1.2.1, poor SNR has been a major obstacle
which hampered progress in ovarian cancer diagnostics via MRS. It has been sug-
gested that in vivo MRS could become the method of choice for accurate detection of
early stage ovarian cancer, insofar as the current obstacles hindering the acquisition
of high quality time signals and the subsequent reliable analysis of spectra as well as
their interpretation can be surmounted [50]. The results of the present study suggest
that application of the FPT could be a step towards realizing this goal, especially if
in vitro and in vivo clinical correlations together with histopathology were initially
provided for verification. On a practical level, the metabolite concentration maps that
we presently initiated could be a particularly useful tool for clinicians to facilitate
reliable interpretation.

The present study uses noise-free FIDs, since we wanted to set up the fully-con-
trolled standard for the FPT in the case of the initial application of this method to
data within the realm of ovarian cancer diagnostics by MRS. This is methodologically
justified [10]. The next steps will be to extend our analysis to both noise-corrupted syn-
thesized data (still well-controlled) and to encoded FIDs such as those from Ref. [51].
These studies are on-going and the results, including doublet and multiplet resonances
will be reported shortly.
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4 Conclusion

The capacity of the fast Padé transform to resolve and precisely quantify all the phys-
ical resonances as encountered in benign versus malignant ovarian cystic fluids is
clearly demonstrated in the present study. This Padé–based quantification as a para-
metric estimation is achieved with a very small number of signal points. The practical
significance of such findings is in the avoidance of the time signals’ exponential tail
which is embedded in the background, and, thus, causes severe problems in quantifica-
tion. Without any fitting or numerical integration of peak areas, the fast Padé transform
reliably and unequivocally yields the metabolite concentrations of major importance
for distinguishing benign from malignant ovarian lesions. These features of the FPT
should be of benefit for ovarian cancer diagnostics via MRS. Such an avenue is of
clinical urgency for early ovarian cancer detection, a goal which is still elusive and
achievement of which would confer a major survival benefit.
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11. Dž. Belkić, Phys. Med. Biol. 51, 6483 (2006)
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